of the periampullary diverticulum on Post ERCP pancreatitis

Jai Hoon Yoon, Seong Ji Choi,, Ho Soon Choi Department of internal medicine, Hanyang University College of Medicine, Seoul, Korea

Background

Endoscopic retrograde cholangiopancreatography (ERCP) is now the exclusive endoscopic therapeutic modality for biliary as well as pancreatic diseases. The correlation between Post-ERCP pancreatitis (PEP) and periampullar diverticulum was evaluated in many studies. However, the incidence of Post-ERCP pancreatitis, according to the types of diverticulum was not elucidated. The aim of this study was to investigate risk factors for post-ERCP pancreatitis including types of diverticulum.

Results

Following the ERCP, 62 (31%) patients suffered PEP. In univariate analysis, periampullary diverticulum (especially type 1 and 2), canulation time and procedure time had correlation with post-ERCP pancreatitis (p-values= 0.016, 0.005, and 0.017, respectively). The other hand, the angle of CBD, EST were not meaning risk factors in this study (p-values= 0.676, and 0.585, respectively). Age-sex adjusted multivariate analysis showed age, periampullary diverticulum, canulation time, and duration of procedure as independent risk factors for PEP (p-values = 0.032, 0.041 and 0.003, respectively). Type 1 and 2 of periampullary diverticulum were main risk factor for PEP (area under receiver operator characteristic curve (AUROC) 0.698; p=0. 002), followed by procedure time (AUROC 0.670; p=0. 007), canulation time (AUROC 0.665; p=0. 009).

Factors	PAD Abscent (n=155)	PAD Present (n=128)	P-value	
Mean age (year)	59.5 ± 17.1	70.8 ± 12.7	<0.001	Table 1 Baseline cha
Male sex (N,%)	67 (43.2%)	61 (47.7%)	0.456	Tuble 1. Buseline end
Cholangitis (N,%)	141 (91%)	121 (94.5%)	0.255	
CBD stone (N,%)	74 (86%)	69 (98.6%)	0.005	
CBD stone size	4 ± 0.0	9.1 \pm 2.4	0.146	
Previous Cholecystectomy (N,%)	15 (25.9%)	14 (28.6%)	0.288	Factors
GB stone (N,%)	44 (78.6%)	27 (60.0%)	0.042	
CBD diameter	4.6 ± 5.1	13.9 ± 2.9	0.04	All type PAD (N,%)
Total bilirubin	2.8 ± 3.5	2.6 ± 1.7	0.665	True 1 DAD
AST	172 ± 206	152 ± 161	0.594	Type T PAD
ALT	223 ± 258	151 ± 154	0.096	Type 2 PAD
ALP	235 ± 167	296 ± 240	0.151	True 2 DA D
GGT	339 ± 281	611 ± 1648	0.268	Type 3 PAD
Post ERCP pancreatitis	69 (44.5%)	73 (357%)	0.036	
EST	94 (82.5%)	93 (83%)	0.908	Table 2. Post ERCP
ERCP cannulation time	20.5 ± 13.3	19.9 ± 13.1	0.722	
ERCP total procedure time	40.5 ± 17.1	40.1 ± 17.2	0.816	

Effect of the size and type

Methods

This is a retrospective case-control study, which included a total of 200 ERCPs, performed by four endosco pists in a single center. 62 patients with PEP, and 138 patients without PEP were enrolled. The correlation be tween PEP and risk factors, including periampullary diverticulum, angle of common bile duct (CBD), endosc opic sphincterotomy (EST), canulation time, procedure time, and periampullary diverticulum types were inve stigated by univariate and multivariate analyses. The types of periampullary diverticulum were classified by the location of ampulla of Vater (type 1: inside the diverticulum; type 2: on the margin of the diverticulum, type 3: outside the diverticulum). Diverticulum were classified into three types by the location of ampulla of Vater: 1, inside the diverticulum; 2, on the margin of diverticulum; 3, outside the diverticulum.

Conclusions

PAD Present (n=74)

73 (57%)

3 (50%)

53(67.1%)

18(40.9%)

P-value

0.036

0.018

PAD, especially Type 2 PAD, cannulation time and procedure time were risk factor for PEP in univariate analysis. However, only cannulation time was significant related to PEP in multivariate analysis. Although, this study had limitations of retrospective case-control study, prospective randomized control study in multi-center was required.

Baseline characteristics

Risk Factors	P-value	Odds Ratio	95% CI
All type PAD	0.036	1.654	1.032-2.652
Type 1 PAD	0.732	0.709	0.142-3.772
Type 2 PAD	0.005	2.815	1.354-5.852
Type 3 PAD	0.007	0.359	0.169-0.759
Cannulation time	0.004	2.876	1.423-7.603
Total procedure time	0.009	2.635	1.358-9.378
Angle of CBD	0.373	0.893	2.652-7.053
History of EST	0.405	1.341	0.671-2.679

2. Post ERCP pancreatitis according to PAD type

PEP Abscent (n=55)

55 (43%)

3 (50%)

26 (32.9%)

26 (59.1%)

Table 3. Risk factors in univariate analysis